ON THE SOME IDENTITIES OF THE TYPE 2 DAEHEE AND CHANGHEE POLYNOMIALS ARISING FROM p-ADIC INTEGRALS ON \mathbb{Z}_{p}

JONGKYUM KWON ${ }^{1}$, WON JOO KIM ${ }^{2}$, AND SEOG-HOON RIM ${ }^{3}$

Abstract

Recently, Kim et al. introduced the type 2 Daehee and Changhee polynomials and give some new identities for these polynomials and numbers. In this paper, we study type 2 Daehee and Changhee polynomials and numbers arising from p-adic integrals on \mathbb{Z}_{p}. Regarding to those polynomials and numbers, we investigate some identities, Witt's formula, and distribution relation of these polynomials and numbers.

1. Introduction

Let p be a fixed prime number with $p \equiv 1(\bmod 2)$. Throughout this paper, $\mathbb{Z}_{p}, \mathbb{Q}_{p}$ and \mathbb{C}_{p} will denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of the algebraic closure of \mathbb{Q}_{p}, respectively.

Let $f(x)$ be uniformly differential function on \mathbb{Z}_{p}. Then the bosonic p-adic integral on \mathbb{Z}_{p} is defined by Kim to be

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} f(x) d \mu(x)=\lim _{N \rightarrow \infty} \frac{1}{p^{N}} \sum_{x=0}^{p^{N}-1} f(x), \quad(\text { see }[3,4,6,8,10,11]) . \tag{1.1}
\end{equation*}
$$

Thus, by (1.1), we get

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} f(x+1) d \mu(x)=\int_{\mathbb{Z}_{p}} f(x) d \mu(x)+f^{\prime}(0) . \tag{1.2}
\end{equation*}
$$

The Daehee polynomials are defined by the generating function to be

$$
\begin{equation*}
\frac{\log (1+t)}{t}(1+t)^{x}=\sum_{n=0}^{\infty} D_{n}(x) \frac{t^{n}}{n!}, \quad(\text { see }[4,6,8,9,10,11,17]) . \tag{1.3}
\end{equation*}
$$

When $x=0, D_{n}=D_{n}(0)$ are called the Daehee numbers.
In [9], Kim et al. introduced the type 2 Daehee polynomials are defined by the generating function to be

$$
\begin{equation*}
\frac{\log (1+t)}{(1+t)-(1+t)^{-1}}(1+t)^{x}=\sum_{n=0}^{\infty} d_{n}(x) \frac{t^{n}}{n!} . \tag{1.4}
\end{equation*}
$$

When $x=0, d_{n}=d_{n}(0)$ are called the type 2 Daehee numbers.

[^0]It is well known that Bernoulli polynomials are defined by the generating function to be

$$
\begin{equation*}
\frac{t}{e^{t}-1} e^{x t}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}, \quad(\text { see }[1,2,5,12,19]) \tag{1.5}
\end{equation*}
$$

When $x=0, B_{n}=B_{n}(0)$ are called the Bernoulli numbers.
In $[5,7,9]$, Kim et al. introduced the type 2 Bernoulli polynomials which are given by the generating function to be

$$
\begin{equation*}
\frac{t}{2} \operatorname{csch} t e^{x t}=\frac{t}{e^{t}-e^{-t}} e^{x t}=\sum_{n=0}^{\infty} b_{n}(x) \frac{t^{n}}{n!} \tag{1.6}
\end{equation*}
$$

When $x=0, b_{n}=b_{n}(0)$ are called the type 2 Bernoulli numbers.
Let $f(x)$ be continuous function on \mathbb{Z}_{p}. Then the fermionic p-adic integral on \mathbb{Z}_{p} is defined by Kim to be

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} f(x) d \mu_{-1}(x)=\lim _{N \rightarrow \infty} \sum_{x=0}^{p^{N}-1} f(x)(-1)^{x}, \quad(\text { see }[13,14,16,18,20]) \tag{1.7}
\end{equation*}
$$

Thus, by (1.7), we get

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} f(x+1) d \mu_{-1}(x)+\int_{\mathbb{Z}_{p}} f(x) d \mu_{-1}(x)=2 f(0) \tag{1.8}
\end{equation*}
$$

The Changhee polynomials are defined by the generating function to be

$$
\begin{equation*}
\frac{2}{2+t}(1+t)^{x}=\sum_{n=0}^{\infty} C h_{n}(x) \frac{t^{n}}{n!}, \quad(\text { see }[9,15,16,18,20]) \tag{1.9}
\end{equation*}
$$

When $x=0, C h_{n}=C h_{n}(0)$ are called the Changhee numbers.
In [9], Kim et al. introduced type 2 Changhee polynomials are defined by the generating function to be

$$
\begin{equation*}
\frac{2}{(1+t)+(1+t)^{-1}}(1+t)^{x}=\sum_{n=0}^{\infty} C_{n}(x) \frac{t^{n}}{n!} . \tag{1.10}
\end{equation*}
$$

When $x=0, C_{n}=C_{n}(0)$ are called the type 2 Changhee numbers.
It is well known Euler polynomials which are given by the generating function to be

$$
\begin{equation*}
\frac{2}{e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!}, \quad(\text { see }[1,2,5,13,14,19]) \tag{1.11}
\end{equation*}
$$

When $x=0, E_{n}=E_{n}(0)$ are called the Euler numbers.
In $[5,7,9]$, Kim et al. introduced the type 2 Euler polynomials which are given by the generating function to be

$$
\begin{equation*}
\operatorname{sech} t e^{x t}=\frac{2}{e^{t}+e^{-t}} e^{x t}=\sum_{n=0}^{\infty} e_{n}(x) \frac{t^{n}}{n!} \tag{1.12}
\end{equation*}
$$

When $x=0, e_{n}=e_{n}(0)$ are called the type 2 Euler numbers.

The Stirling numbers of the first kind is defined by the generating function to be

$$
\begin{equation*}
\frac{1}{k!}(\log (1+t))^{k}=\sum_{n=k}^{\infty} S_{1}(n, k) \frac{t^{n}}{n!}, \quad(\text { see }[5,7,9]) \tag{1.13}
\end{equation*}
$$

and the Stirling numbers of the second kind is defined by the generating function to be

$$
\begin{equation*}
\frac{1}{k!}\left(e^{t}-1\right)^{k}=\sum_{n=k}^{\infty} S_{2}(n, k) \frac{t^{n}}{n!}, \quad(\text { see }[5,7,15]) \tag{1.14}
\end{equation*}
$$

In [9], Kim et al. introduced the type 2 Changhee and Daehee polynomials and give some new identities for these polynomials and numbers. In this paper, we study type 2 Daehee and Changhee polynomials and numbers arising from p-adic integrals on \mathbb{Z}_{p}. Regarding to those polynomials and numbers, we investigate some identities, Witt's formula, and distribution relation of these polynomials and numbers.

2. Some identities of the type 2 Daehee and Changhee polynomials arising from p-adic integrals on \mathbb{Z}_{p}

In the following discussions, we assume that $t \in \mathbb{C}_{p}$ with $|t|_{p}<p^{-\frac{1}{p-1}}$. In the viewpoint of (1.2), we define the type 2 Daehee polynomials from p-adic integral on \mathbb{Z}_{p} as follows;

$$
\begin{align*}
\frac{1}{2} \int_{\mathbb{Z}_{p}}(1+t)^{2 y+x+1} d \mu(y) & =\frac{\log (1+t)}{(1+t)-(1+t)^{-1}}(1+t)^{x} \\
& =\sum_{n=0}^{\infty} d_{n}(x) \frac{t^{n}}{n!} \tag{2.1}
\end{align*}
$$

When $x=0, d_{n}=d_{n}(0)$ are called the type 2 Daehee numbers.
On the other hand,

$$
\begin{align*}
\frac{1}{2} \int_{\mathbb{Z}_{p}}(1+t)^{2 y+x+1} d \mu(y) & =\frac{1}{2} \int_{\mathbb{Z}_{p}} e^{(2 y+x+1) \log (1+t)} d \mu(y) \\
& =\frac{1}{2} \sum_{k=0}^{\infty} \int_{\mathbb{Z}_{p}}(2 y+x+1)^{k} d \mu(y) \frac{1}{k!}(\log (1+t))^{k} \\
& =\frac{1}{2} \sum_{k=0}^{\infty} \int_{\mathbb{Z}_{p}}(2 y+x+1)^{k} d \mu(y) \sum_{n=k}^{\infty} S_{1}(n, k) \frac{t^{n}}{n!} \tag{2.2}\\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{1}{2} \int_{\mathbb{Z}_{p}}(2 y+x+1)^{k} d \mu(y) S_{1}(n, k)\right) \frac{t^{n}}{n!}
\end{align*}
$$

Where $S_{1}(n, k)$ is the Stirling number of the first kind.
From (2.1) and (2.2), we have the following theorem.

Theorem 2.1. For $n \geq 0$, we have

$$
\begin{equation*}
d_{n}(x)=\sum_{k=0}^{n} \frac{1}{2} \int_{\mathbb{Z}_{p}}(2 y+x+1)^{k} d \mu(y) S_{1}(n, k) \tag{2.3}
\end{equation*}
$$

Since

$$
\begin{align*}
\sum_{n=0}^{\infty} b_{n}(x) \frac{t^{n}}{n!} & =\frac{t}{e^{t}-e^{-t}} e^{x t} \\
& =\frac{1}{2} \int_{\mathbb{Z}_{p}} e^{(2 y+x+1) t} d \mu(y) \tag{2.4}\\
& =\sum_{n=0}^{\infty} \frac{1}{2} \int_{\mathbb{Z}_{p}}(2 y+x+1)^{n} d \mu(y) \frac{t^{n}}{n!}
\end{align*}
$$

From Theorem 2.1 and (2.4), we have the following Corollary.
Corollary 2.2. For $n \geq 0$, we have

$$
\begin{equation*}
d_{n}(x)=\sum_{k=0}^{n} b_{k}(x) S_{1}(n, k) \tag{2.5}
\end{equation*}
$$

Now, we observe that

$$
\begin{align*}
\int_{\mathbb{Z}_{p}}(1+t)^{2 y+x+1} d \mu(y) & =2 \frac{\log (1+t)}{(1+t)-(1+t)^{-1}}(1+t)^{x} \\
& =2 \sum_{n=0}^{\infty} d_{n}(x) \frac{t^{n}}{n!} \tag{2.6}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\frac{\log (1+t)}{(1+t)-(1+t)^{-1}}(1+t)^{x} & =\sum_{n=0}^{\infty} \int_{\mathbb{Z}_{p}}\binom{2 y+x+1}{n} d \mu(y) t^{n} \tag{2.7}\\
& =\sum_{n=0}^{\infty} \int_{\mathbb{Z}_{p}}(2 y+x+1)_{n} d \mu(y) \frac{t^{n}}{n!}
\end{align*}
$$

where $(x)_{n}=x(x-1) \cdots(x-n+1)$.
Therefore, by (2.6) and (2.7), we have the following theorem.
Theorem 2.3. (Witt's formula for $d_{n}(x)$)
For $n \geq 0$, we have

$$
\begin{equation*}
2 d_{n}(x)=\int_{\mathbb{Z}_{p}}(2 y+x+1)_{n} d \mu(y) \tag{2.8}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
2 d_{n}=\int_{\mathbb{Z}_{p}}(2 x+1)_{n} d \mu(x) \tag{2.9}
\end{equation*}
$$

By replacing t by $e^{t}-1$ in (2.1), we get

$$
\begin{align*}
\sum_{k=0}^{\infty} d_{k}(x) \frac{1}{k!}\left(e^{t}-1\right)^{k} & =\frac{1}{2} \int_{\mathbb{Z}_{p}} e^{(2 y+x+1) t} d \mu(y) \\
& =\frac{t}{e^{t}-e^{-t}} e^{x t} \tag{2.10}\\
& =\sum_{n=0}^{\infty} b_{n}(x) \frac{t^{n}}{n!}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\sum_{k=0}^{\infty} d_{k}(x) \frac{1}{k!}\left(e^{t}-1\right)^{k} & =\sum_{k=0}^{\infty} d_{k}(x) \sum_{n=k}^{\infty} S_{2}(n, k) \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} d_{k}(x) S_{2}(n, k)\right) \frac{t^{n}}{n!} . \tag{2.11}
\end{align*}
$$

Therefore, by (2.10) and (2.11), we obtain the following theorem.

Theorem 2.4. For $n \geq 0$, we have

$$
\begin{equation*}
b_{n}(x)=\sum_{k=0}^{n} d_{k}(x) S_{2}(n, k) \tag{2.12}
\end{equation*}
$$

We observe that

$$
\begin{align*}
\int_{\mathbb{Z}_{p}} f(x) d \mu(x) & =\lim _{N \rightarrow \infty} \frac{1}{p^{N}} \sum_{x=0}^{p^{N}-1} f(x) \\
& =\lim _{N \rightarrow \infty} \frac{1}{d p^{N}} \sum_{x=0}^{d p^{N}-1} f(x) \tag{2.13}\\
& =\frac{1}{d} \lim _{N \rightarrow \infty} \frac{1}{p^{N}} \sum_{a=0}^{d-1} \sum_{x=0}^{p^{N}-1} f(a+d x) \\
& =\frac{1}{d} \sum_{a=0}^{d-1} \int_{\mathbb{Z}_{p}} f(a+d x) d \mu(x)
\end{align*}
$$

Proposition 1. For $d \in \mathbb{N}$, we have

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} f(x) d \mu(x)=\frac{1}{d} \sum_{a=0}^{d-1} \int_{\mathbb{Z}_{p}} f(a+d x) d \mu(x) \tag{2.14}
\end{equation*}
$$

By (2.14), we note that

$$
\begin{align*}
\sum_{n=0}^{\infty} d_{n}(x) \frac{t^{n}}{n!} & =\frac{1}{2} \int_{\mathbb{Z}_{p}}(1+t)^{2 y+x+1} d \mu(y) \\
& =\frac{1}{2} \frac{1}{d} \sum_{a=0}^{d-1} \int_{\mathbb{Z}_{p}}(1+t)^{2(a+d y)+x+1} d \mu(y) \\
& =\frac{1}{2} \frac{1}{d} \sum_{a=0}^{d-1}(1+t)^{2 a+x+1} \int_{\mathbb{Z}_{p}}(1+t)^{2 d y} d \mu(y) \tag{2.15}\\
& =\frac{1}{d} \sum_{a=0}^{d-1} \frac{d \log (1+t)}{e^{d \log (1+t)}-e^{-d \log (1+t)}} e^{\left(\frac{2 a+x+1}{d}-1\right) d \log (1+t)} \\
= & \frac{1}{d} \sum_{a=0}^{d-1} \sum_{k=0}^{\infty} b_{k}\left(\frac{2 a+x+1}{d}-1\right) \frac{1}{k!} d^{k}(\log (1+t))^{k} \\
= & \frac{1}{d} \sum_{a=0}^{d-1} \sum_{k=0}^{\infty} b_{k}\left(\frac{2 a+x+1}{d}-1\right) \sum_{n=k}^{\infty} S_{1}(n, k) \frac{t^{n}}{n!} \\
= & \sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} d^{k-1} \sum_{a=0}^{d-1} b_{k}\left(\frac{2 a+x+1}{d}-1\right) S_{1}(n, k)\right) \frac{t^{n}}{n!}
\end{align*}
$$

Therefore, by (2.15), we get the following theorem.
Theorem 2.5. For $n \geq 0$ and $d \in \mathbb{N}$, we have

$$
\begin{equation*}
d_{n}(x)=\sum_{k=0}^{n} d^{k-1} \sum_{a=0}^{d-1} b_{k}\left(\frac{2 a+x+1}{d}-1\right) S_{1}(n, k) \tag{2.16}
\end{equation*}
$$

In the viewpoint of (1.8), we define the type 2 Changhee polynomials from p-adic integrals on \mathbb{Z}_{p} as follows;

$$
\begin{align*}
\int_{\mathbb{Z}_{p}}(1+t)^{2 y+x+1} d \mu_{-1}(y) & =(1+t)^{x+1} \int_{\mathbb{Z}_{p}}(1+t)^{2 y} d \mu_{-1}(y) \\
& =(1+t)^{x+1} \frac{2}{(1+t)^{2}+1} \\
& =\frac{2}{(1+t)+(1+t)^{-1}}(1+t)^{x} \tag{2.17}\\
& =\sum_{n=0}^{\infty} C_{n}(x) \frac{t^{n}}{n!}
\end{align*}
$$

When $x=0, C_{n}=C_{n}(0)$ are called the type 2 Changhee numbers.

Note that

$$
\begin{align*}
\int_{\mathbb{Z}_{p}}(1+t)^{2 y+x+1} d \mu_{-1}(y) & =\int_{\mathbb{Z}_{p}} e^{(2 y+x+1) \log (1+t)} d \mu_{-1}(y) \\
& =\sum_{k=0}^{\infty} \int_{\mathbb{Z}_{p}}(2 y+x+1)^{k} d \mu_{-1}(y) \frac{1}{k!}(\log (1+t))^{k} \\
& =\sum_{k=0}^{\infty} \int_{\mathbb{Z}_{p}}(2 y+x+1)^{k} d \mu_{-1}(y) \sum_{n=k}^{\infty} S_{1}(n, k) \frac{t^{n}}{n!} \tag{2.18}\\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \int_{\mathbb{Z}_{p}}(2 y+x+1)^{k} d \mu_{-1}(y) S_{1}(n, k)\right) \frac{t^{n}}{n!} .
\end{align*}
$$

From (2.17) and (2.18), we have the following theorem.
Theorem 2.6. For $n \geq 0$, we have

$$
\begin{equation*}
C_{n}(x)=\sum_{k=0}^{n} \int_{\mathbb{Z}_{p}}(2 y+x+1)^{k} d \mu_{-1}(y) S_{1}(n, k) \tag{2.19}
\end{equation*}
$$

Observe that

$$
\begin{align*}
\sum_{n=0}^{\infty} e_{n}(x) \frac{t^{n}}{n!} & =\frac{2}{e^{t}+e^{-t}} e^{x t} \\
& =\int_{\mathbb{Z}_{p}} e^{(2 y+x+1) t} d \mu_{-1}(y) \tag{2.20}\\
& =\sum_{n=0}^{\infty} \int_{\mathbb{Z}_{p}}(2 y+x+1)^{n} d \mu_{-1}(y) \frac{t^{n}}{n!} .
\end{align*}
$$

Where $e_{n}(x)$ are called the type 2 Euler polynomials.
From Theorem 2.6 and (2.20), we have the following Corollary.
Corollary 2.7. For $n \geq 0$, we have

$$
\begin{equation*}
C_{n}(x)=\sum_{k=0}^{n} e_{k}(x) S_{1}(n, k) . \tag{2.21}
\end{equation*}
$$

By replacing t by $e^{t}-1$ in (2.17), we get

$$
\begin{align*}
\int_{\mathbb{Z}_{p}} e^{(2 y+x+1) t} d \mu_{-1}(y) & =\frac{2}{e^{t}+e^{-t}} e^{x t} \\
& =\sum_{n=0}^{\infty} e_{n}(x) \frac{t^{n}}{n!} . \tag{2.22}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\sum_{k=0}^{\infty} C_{k}(x) \frac{1}{k!}\left(e^{t}-1\right)^{k} & =\sum_{k=0}^{\infty} C_{k}(x) \sum_{n=k}^{\infty} S_{2}(n, k) \frac{t^{n}}{n!} \tag{2.23}\\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} C_{k}(x) S_{2}(n, k)\right) \frac{t^{n}}{n!}
\end{align*}
$$

Therefore, by (2.22) and (2.23), we obtain the following theorem.

Theorem 2.8. For $n \geq 0$, we have

$$
\begin{equation*}
e_{n}(x)=\sum_{k=0}^{n} C_{k}(x) S_{2}(n, k) \tag{2.24}
\end{equation*}
$$

Now, we observe that

$$
\begin{align*}
\sum_{n=0}^{\infty} d_{n}(x) \frac{t^{n}}{n!} & =\int_{\mathbb{Z}_{p}}(1+t)^{2 y+x+1} d \mu_{-1}(y) \\
& =\sum_{n=0}^{\infty} \int_{\mathbb{Z}_{p}}\binom{2 y+x+1}{n} d \mu_{-1}(y) t^{n} \tag{2.25}\\
& =\sum_{n=0}^{\infty} \int_{\mathbb{Z}_{p}}(2 y+x+1)_{n} d \mu_{-1}(y) \frac{t^{n}}{n!} .
\end{align*}
$$

Therefore, by (2.25), we have the following theorem.

Theorem 2.9. (Witt's formula for $C_{n}(x)$)
For $n \geq 0$, we have

$$
\begin{equation*}
C_{n}(x)=\int_{\mathbb{Z}_{p}}(2 y+x+1)_{n} d \mu_{-1}(y) \tag{2.26}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
C_{n}=\int_{\mathbb{Z}_{p}}(2 x+1)_{n} d \mu_{-1}(y) \tag{2.27}
\end{equation*}
$$

For $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$ we have

$$
\begin{align*}
\int_{\mathbb{Z}_{p}} f(x) d \mu_{-1}(x) & =\lim _{N \rightarrow \infty} \sum_{x=0}^{p^{N}-1} f(x)(-1)^{x} \\
& =\lim _{N \rightarrow \infty} \sum_{x=0}^{d p^{N}-1} f(x)(-1)^{x} \\
& =\sum_{a=0}^{d-1} \lim _{N \rightarrow \infty} \sum_{x=0}^{p^{N}-1} f(a+d x)(-1)^{a+d x} \tag{2.28}\\
& =\sum_{a=0}^{d-1}(-1)^{a} \lim _{N \rightarrow \infty} \sum_{x=0}^{p^{N}-1} f(a+d x)(-1)^{x} \\
& =\sum_{a=0}^{d-1}(-1)^{a} \int_{\mathbb{Z}_{p}} f(a+d x) d \mu_{-1}(x) .
\end{align*}
$$

Proposition 2. For $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$ we have

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} f(x) d \mu_{-1}(x)=\sum_{a=0}^{d-1}(-1)^{a} \int_{\mathbb{Z}_{p}} f(a+d x) d \mu_{-1}(x) \tag{2.29}
\end{equation*}
$$

By (2.29), we have

$$
\begin{align*}
\sum_{n=0}^{\infty} C_{n}(x) \frac{t^{n}}{n!} & =\int_{\mathbb{Z}_{p}}(1+t)^{2 y+x+1} d \mu_{-1}(y) \\
& =\sum_{a=0}^{d-1}(-1)^{a} \int_{\mathbb{Z}_{p}}(1+t)^{2(a+d y)+x+1} d \mu_{-1}(y) \\
& =\sum_{a=0}^{d-1}(-1)^{a}(1+t)^{2 a+x+1} \int_{\mathbb{Z}_{p}}(1+t)^{2 d y} d \mu_{-1}(y) \\
& =\sum_{a=0}^{d-1}(-1)^{a}(1+t)^{2 a+x+1-d} \frac{2}{(1+t)^{d}-(1+t)^{-d}} \tag{2.30}\\
& =\sum_{a=0}^{d-1}(-1)^{a} \sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} e_{k}\left(\frac{2 a+x+1}{d}-1\right) d^{k} S_{1}(n, k)\right) \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} d^{k} \sum_{a=0}^{d-1}(-1)^{a} e_{k}\left(\frac{2 a+x+1}{d}-1\right) S_{1}(n, k)\right) \frac{t^{n}}{n!}
\end{align*}
$$

Therefore, by (2.30), we get the following theorem.
Theorem 2.10. For $n \geq 0$ and $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$, we have

$$
\begin{equation*}
C_{n}(x)=\sum_{k=0}^{n} d^{k} \sum_{a=0}^{d-1}(-1)^{a} e_{k}\left(\frac{2 a+x+1}{d}-1\right) S_{1}(n, k) \tag{2.31}
\end{equation*}
$$

3. Conclusion

In recent years, Kim et al. introduced the various type 2 special polynomials and numbers and provided some identities and properties of those polynomials and numbers. In this paper, we study type 2 Daehee and Changhee polynomials arising from p-adic integrals on \mathbb{Z}_{p}. We represent Witt's formula type 2 Daehee and Changhee polynomials arising from p-adic invariant integral on \mathbb{Z}_{p} in Theorem 2.3 and Theorem 2.9 respectively. Moreover, we investigate some explicit identities and properties related to type 2 Bernoulli polynomials and Euler polynomials. We provide type 2 Bernoulli polynomials and Euler polynomials associated with type 2 Daehee and Changhee polynomials as the inversion form in Theorem 2.4 and Theorem 2.8. Also, we represent the distribution of type 2 Daehee and Changhee polynomials using Proposition 1 and 2.

References

1. L. Comtet, Nombres de Stirling generaux et fonctions symetriques, C. R. Acad, Sci. Paris Ser. A., 1972 747-750.
2. L. Comtet, Advanced combinatorics: the art of finite and infinite expansions (translated from the French by J.W. Nienhuys), Dordrecht and Boston: Reidel, 1974.
3. D. V. Dolgy, G. -W. Jang, D. S. Kim, T. Kim, Explicit expressions for Catalan-Daehee numbers, Proc. Jangjeon Math. Soc., 20 (2017), no. 1, 1-9.
4. B. S. El-Desouky, A. Mustafa, New results on higher-order Daehee and Bernoulli numbers and polynomials, Adv. Dieerence Equ., 2016, paper No. 32, 21 pp.
5. G. -W. Jang, T. Kim, A note on type 2 degenerate Euler and Bernoulli polynomials, Adv. Stud. Contemp. Math.(Kyungshang), 29 (2019), no. 1, 147-159.
6. W. A. Khan, K. S. Nisar, U. Duran, M. Acikgoz, S. Araci, Multifarious implicit summation formulae of Hermite-based poly-Daehee polynomials, Appl. Math. Inf. Sci., 12 (2018), no. 2, 305-310
7. D. S. Kim, H. Y. Kim, S. -S. Pyo, T. Kim, Some identities of special numbers and polynomials arising from p-adic integrals on \mathbb{Z}_{p}, (Preprint).
8. D. S. Kim, T. Kim, Daehee numbers and polynomials, Appl. Math. Sci.(Ruse), 7 (2013), no. 120, 5969-5976.
9. D. S. Kim, T. Kim, A note on type 2 Changhee and Daehee polynomials, Rev. de la Real Acad. De Cien. Exac. Fis. Nat. Series A. Mate., (2019), 1-9, https://doi.org/10.1007/s13398-019-00656-x.
10. D. S. Kim, T. Kim, H. I. Kwon, G. -W. Jang, Degenerate Daehee polynomials of the second kind, Proc. Jangjeon Math. Soc., 21 (2018), no. 1, 83-97.
11. D. S. Kim, T. Kim, S. -H. Lee, J. -J. Seo, Higher-order Daehee numbers and polynomials, Int. J. Math. Anal., 8 (2014), no. 6, 273-283.
12. T. Kim, On Degenerate q-Bernoulli polynomials, Bull. Korean Math. soc., 53 (2016), no. 4, 1149-1156.
13. T. Kim, q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys., 14 (2007), 15-27.
14. T. Kim, New approach to q-Euler polynomials of higher-order, Russ. J. Math. Phys., 17 (2010), 218-225.
15. T. Kim, D. S. Kim, A note on nonlinear Changhee differential equations, Russ. J. Math. Phys., 23 (2016), no. 1, 88-92.
16. H. -I. Kwon, T. Kim, J. J. Seo, A note on degenerate Changhee numbers and polynomials, Proc. Jangjeon Math. Soc., 18 (2015), no. 3, 295-305.
17. C. Liu, W. Wuyungaowa, Application of probabilistic method on Daehee sequences, Eur. J. Pure Appl. Math., 11 (2018), no. 1, 69-78.
18. H. -K. Pak, J. Jeong, D. -J. Kang, S. -H. Rim, Changhee-Genocchi numbers and their applications, Ars Combin., 136 (2018), 153-159.
19. S. Roman, The Umbral Calculus, New York: Academic Press, 1984.
20. Y. Simsek, Identities on the Changhee numbers and Apostol-type Daehee polynomials, Adv. Stud. Contemp. Math.(Kyungshang), 27 (2017), no. 2, 199-212.
${ }^{1}$ Department of Mathematics Education and ERI, Gyeongsang National University, Jinju, Gyeongsangnamdo, 52828, Republic of Korea

E-mail address: mathkjk26@gnu.ac.kr
${ }^{2}$ Department of Applied Mathematics, Kyunghee University, Yongin-si, 17104, Republic of Korea

E-mail address: wjookim@khu.ac.kr
${ }^{3}$ Department of Mathematics Education, Kyungpook National University, Daegu, 41566, Republic of Korea(Corresponding author)

E-mail address: shrim@knu.ac.kr

[^0]: 2010 Mathematics Subject Classification. 11B83; 33C05; 33C45.
 Key words and phrases. Changhee polynomials, Daehee polynomials, type 2 Changhee polynomials, type 2 Daehee polynomials.
 ${ }^{3}$ corresponding author.

